Каталог Данных Каталог Организаций Каталог Оборудования Каталог Программного Обеспечения Написать письмо Наши координаты Главная страница
RSS Реклама Карта сайта Архив новостей Форумы Опросы 
Здравствуйте! Ваш уровень доступа: Гостевой
Навигатор: Новости/
 
Rus/Eng
Поиск по сайту    
 ГИС-Ассоциация
 Аналитика и обзоры
 Нормы и право
 Конкурсы
 Дискуссии
 Наши авторы
 Публикации
 Календарь
 Биржа труда
 Словарь терминов
Проект поддерживают  



Авторизация    
Логин
Пароль

Забыли пароль?
Проблемы с авторизацией?
Зарегистрироваться


width=1 Rambler_Top100

наша статистика
статистика по mail.ru
статистика по rambler.ru

Реклама на сайте
Новостные ленты

Нейросеть поможет экологам, лесникам и операторам ЛЭП померить таежные деревья по ДДЗ

Как сообщает cnews.ru, ученые из «Сколтеха» обучили нейросеть определять высоту деревьев на спутниковых снимках. Решение будет полезно для мониторинга окружающей среды, запасов древесины и инфраструктурных объектов, в первую очередь высоковольтных линий. Представленная в журнале IEEE Access модель отличается от ранее существовавших тем, что не требует малодоступных данных — съемок с дронов или с использованием нескольких инфракрасных камер. Об этом CNews сообщили представители «Сколтеха».

Оценки высоты лесного покрова нужны экологам, работникам лесного хозяйства и операторам инфраструктурных объектов. Зная высоту деревьев, можно лучше оценить состояние экосистемы, потенциал лесного массива с точки зрения фиксации атмосферного углекислого газа, количество доступной для заготовки древесины и риски повреждения линий электропередачи.

Задействовать в сборе этой информации лесников и дроны крайне дорого, особенно если требуется охватить обширный и/или труднодоступный участок леса. Можно использовать так называемые мультиспектральные спутниковые данные — съемку с орбиты не только в видимом, но и в инфракрасном диапазоне. Проблема в том, что такие данные дороги, а для многих территорий и вовсе отсутствуют, в то время как обычная оптическая съемка со спутника широко доступна, но надежно предсказать по ней высоту деревьев до сих пор не представлялось возможным.

Исследователи из «Сколтеха» и их коллега из «Сбера» решили эту проблему: они представили нейросеть, которая эффективно предсказывает высоту лесного покрова на основе оптических данных со спутника.

«Если выделить один ключевой фактор успеха нашей нейросети, то, пожалуй, дело в ее способности анализировать пространственные данные и текстурные характеристики. Существует связь между формой и размером кроны дерева и его высотой, и наша нейросеть эту связь учитывает», — прокомментировала результаты исследования его первый автор, аспирантка «Сколтеха» Светлана Илларионова.

«Мы привлекаем вспомогательные данные, — добавила ученая. — Помимо оптической съемки, в качестве признаков на вход нейронной сети подается ArcticDEM — свободно доступная цифровая модель таежного рельефа без учета растительности с разрешением два метра».

Коллектив обучил нейросеть на данных по Архангельской области. Оценку качества предсказаний проводили путем их сопоставления с проведенными в том же регионе лидарными наблюдениями с беспилотника. Тем не менее, по словам ученых, решение будет работать и в других районах с сопоставимой растительностью.


Разделы, к которым прикреплен документ:
Новости
Данные
Организации
Тематич. разделы / Природопользование / Лесопользование
Тематич. разделы / Картография, ГИС
Тематич. разделы / ДДЗ
Страны и регионы / Россия
 
Комментарии (0) Для того, чтобы оставить комментарий Вам необходимо авторизоваться или зарегистрироваться




ОБСУДИТЬ В ФОРУМЕ
Оставлено сообщений: 0


Источник: https://www.cnews.ru/news/line/2022-05-19_nejroset_pomozhet_ekologam?utm_source=yxnews&utm_medium=desktop&utm_referrer=https%3A%2F%2Fyandex.ru%2Fnews%2Fsearch%3Ftext%3D 16:22:17 19.05 2022   

Версия для печати  
    Анонсы партнеров

    Наши предложения
  Зарегистрироваться и получать новости по e-mail
  Реклама на сайте
  Конференции ГИС-Ассоциации
  Журнал "Управление развитием территории"
  Контакты

Портал Gisa.ru использует файлы cookie для повышения удобства пользователей и обеспечения работоспособности сайта и сервисов. Оставаясь на сайте Gisa.ru вы подтверждаете свое согласие на использование файлов cookie. Если вы не хотите использовать файлы cookie, то можете изменить настройки браузера. Пользовательское соглашение. Политика конфиденциальности.
© ГИС-Ассоциация. 2002-2022 гг.
Time: 0.018612146377563 sec, Question: 80